

Локализация ошибки на основе метода расширенной проекции

(Ставропольский военный институт связи ракетных войск, Сибирский государственный университет телекоммуникаций и информатики)

Система счисления в остаточных классах (СОК) [1] открывает возможность использования единого помехоустойчивого кода для борьбы с ошибками, возникающими при передаче информации по каналам связи и при ее обработке в цифровых системах.

Рассмотрим систему оснований p_1 , p_2 ,..., p_{n-1} с диапазоном $R = \prod_{i=1}^{n-1} p_i$, который будем называть рабочим. Введем основание p_n , взаимно простое с любым из n-1 оснований, которое назовем контрольным, и будем представлять числа в системе из n оснований. Это означает, что мы будем передавать и обрабатывать числа, принадлежащие диапазону $(0 \div R)$, в более широком диапазоне $(0 \div P)$, где $P = p_n R$ [1], который будем называть полным. Правильными будем считать числа, принадлежащие диапазону $(0 \div R)$, искаженные – диапазону $(R \div P)$.

1

Для обнаружения факта ошибки используется следующее правило [3].

Если число представлено в обобщенной полиадической системе (OПС), то

- при $a_n=0$ число принадлежит рабочему диапазону (правильное);
- при $a_n \neq 0$ число принадлежит диапазону $(R \div P)$ (ошибочное).

В [5] показано, что число $A=(\alpha_1,...,\alpha_i,....,\alpha_n)$ преобразованное в число $\widetilde{A}=(\alpha_1,...,\widetilde{\alpha}_i,...,\alpha_n)$ через ошибку в і-той цифре при умножении каждой цифры α_j на p_i и приведении этого произведения по модулю p_j проецируется на модифицированный правильный диапазон $(0 \div p_i R)$ и при умножении на p_j при $i \neq j$ проецируется на модифицированный неправильный диапазон $(p_i R \div P)$.

Для определения диапазона, в который попадает расширенная проекция необходимо представление ОПС такое, что произведение оснований при старшем коэффициенте a_n было равно p_iR . Следующая теорема показывает, как осуществить выбор системы оснований, чтобы выполнялось это условие.

Теорема 1

Для того, чтобы при старшем коэффициенте a_n представления числа A в ОПС произведение оснований было равно p_iR необходимо и достаточно в исходной системе основание p_i было заменено на p_i^2 .

Доказательство

Докажем достаточность утверждения.

Представление числа А в ОПС имеет вид

$$A = \sum_{k=1}^{n} a_k \prod_{i=1}^{k-1} p_i . \tag{1}$$

Для $\mathbf{k}=1$: $\prod_{i=1}^0 p_i=1$, для $\mathbf{k}=\mathbf{n}$ $a_n\prod_{i=1}^{n-1} p_i$. Так как $\prod_{i=1}^{n-1} p_i=R$, то для $\mathbf{k}=\mathbf{n}$ справедлива запись $\mathbf{a_n}R$.

По определению

$$R = \prod_{i=1}^{n-1} p_i = p_1 \prod_{i=2}^{n-1} p_i = p_2 \prod_{\substack{i=1 \ i \neq 2}}^{n-1} p_i = \dots = p_j \prod_{\substack{i=1 \ i \neq j}}^{n-1} p_i = \dots = p_{n-1} \prod_{i=1}^{n-2} p_i.$$
 (2)

Умножим обе части этого равенства на рі и получим

$$p_{j}R = p_{j}\prod_{i=1}^{n-1}p_{i} = p_{j}p_{1}\prod_{i=2}^{n-1}p_{i} = p_{j}p_{2}\prod_{\substack{i=1\\i\neq 2}}^{n-1}p_{i} = \dots = p_{j}p_{j}\prod_{\substack{i=1\\i\neq j}}^{n-1}p_{i} = \dots = p_{j}p_{n-1}\prod_{\substack{i=1\\i\neq j}}^{n-2}p_{i}.$$
 (3)

Введем подстановку

$$p'_{1} = p_{i}p_{1}; p'_{2} = p_{i}p_{2};...; p'_{i} = p_{i}p_{i};...; p'_{n-1} = p_{i}p_{n-1}$$
 (4)

тогда

$$p_{j}R = p_{j}\prod_{i=1}^{n-1}p_{i} = p_{1}'\prod_{i=2}^{n-1}p_{i} = p_{2}'\prod_{\substack{i=1\\i\neq j}}^{n-1}p_{i} = \dots = p_{j}'\prod_{\substack{i=1\\i\neq j}}^{n-1}p_{i} = \dots = p_{n-1}'\prod_{\substack{i=1\\i\neq j}}^{n-2}p_{i}.$$
 (5)

Достаточность утверждения доказана. Необходимость докажем следующим образом. При осуществлении перевода числа из СОК в ОПС і-тая цифра будет вычисляться следующим образом

$$a_i = ((((...(a_i - a_1)p_1^{-1} - a_2)p_2^{-1} - a_3)... - a_{i-1})p_{i-1}^{-1}) \bmod p_i.$$
 (6)

Введем обозначение

$$c = ((...(\alpha_i - a_1)p_1^{-1} - a_2)p_2^{-1} - a_3)... - a_i.$$
 (7)

Подставляя (7) в (6), получим

$$a_i \equiv cp_{i-1}^{-1} \bmod p_i. \tag{8}$$

Если положить в p_{i-1} в новой системе оснований равным $p_{i-1}p_i$, то

$$\mathbf{a}_{i} \equiv \mathbf{c}(\mathbf{p}_{i-1}\mathbf{p}_{i})^{-1} \bmod \mathbf{p}_{i} \tag{9}$$

или

$$a_i \frac{p_{i-1}}{c} p_i \equiv 1 \mod p_i \tag{10}$$

А сравнение такого вида решений относительно а_і не имеет.

Таким образом, для получения верхней границы модифицированного правильного диапазона при старшем коэффициенте а_п необхо-

димо осуществить преобразование ОПС такое, что в качестве одного из оснований системы взято основание, умноженное само на себя. При этом это должно быть основание, по которому находится расширенная проекция.

Для нахождения представления в ОПС при такой системе оснований необходимо знать остаточную цифру по новому основанию. Ее нахождение можно осуществить способами, изложенными в [2,4].

Рассмотрим пример.

Пусть имеется система оснований $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, где p_1 , p_2 – рабочие основания, а p_3 – контрольное, и в этой системе задано число A=3=(1,0,3). Пусть произошло искажение второго символа: $(1,0,3) \rightarrow (1,1,3)$. Факт искажения будем считать установленным.

Найдем расширенную проекцию по основанию p_1 $(1,1,3)\cdot 2=(0,2,1)$. Верхняя граница модифицированного правильного диапазона $p_1R=2\cdot 6=12$. Заменим основание p_1 на основание $p_1^2=4$. Тогда представление расширенной проекции для новой системы оснований СОК $(p_1=4, p_2=3, p_3=5)$ будет иметь вид (2,2,1), а представление в ОПС (2,0,2)=26. Так как $a_3\neq 0$, то цифра по основанию p_1 безошибочна (12<26). Найдем теперь расширенную проекцию по основанию p_2 . $(1,1,3)\cdot 3=(1,0,4)$. Верхняя граница модифицированного правильного диапазона составит $p_2R=3\cdot 6=18$. В новой системе оснований СОК $(p_1=2, p_2=9, p_3=5)$ расширенная проекция будет иметь вид (1,0,3), представление в ОПС (1,4,0)=9. Так как $a_3=0$, то во втором разряде цифра искажена (18>9).

Таким образом, с помощью предложенного метода можно осуществить локализацию искаженного разряда в данных, представленных кодом СОК.

Данный способ имеет преимущества перед методом, изложенным в [1] в том, что исчезает необходимость знать величину проекции, достаточно знать только старший коэффициент представления ОПС. Кроме того, в предлагаемом методе сравнение можно реализовать с помощью модульной операции.

Литература

1. Акушский И.Я., Юдицкий Д.И., Машинная арифметика в оста-

- точных классах. М.: Советское радио, 1968. 440 с.
- 2 Справочник по цифровой вычислительной технике/ Под ред. *Б.Н. Малиновского.* Киев: Техника, 1975. 512 с.
- 3. *Торгашев В. А.* Система остаточных классов и надежность ЦВМ. М.: Сов. радио, 1973. 118 с.
- 4 Червяков Н.И., Ряднов С.А., Сахнюк П.А., Шапошников А.В., Модулярные параллельные вычислительные структуры нейропроцессорных систем. М.: ФИЗМАТЛИТ, 2003. 288 с.
- W. Kenneth Jenkins, Edward J Altman. Self-checking properties of Residue Number error checkers based on Mixed Radix conversion.

 IEEE Transactions on circuits and system, vol. 35, No. 2, February.