МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА

Вычислительный центр М. Н. Лисицына

Подпрограммы для интерполяции и вычисления первых и вторых производных функций одного переменного, заданной таблично (в системе ИП-3)

Серия:

Математическое обслуживание машины «Сетунь»

Под общей редакцией В.А.Морозова Выпуск 28

> Москва 1970

Содержание

§1.	Назначение	и краткая	характеристика	подпро-
грами	л			3
§2. 0	Описание мето	ода		4
§3. V	1нструкция к	использова	анию подпрограмм	8
§4. E	Блок схемы по	одпрограмм		11
4.1	. Блок схема по	дпрограммы	построения spline-ф	ункции11
4.2	. Блок-схема по	дпрограммы		12
§5. L	Нисленные рез	зультаты		13
Литер	ратура			16
Прило	ожение 1. Ста	андартная г	подпрограмма, ре	ализующая
постр	ооение <i>spline</i> -ф	ункции		17
Прило	ожение 2. Ст	гандартная	подпрограмма в	ычисления
значе	ений <i>spline</i> -фун	кции и ее	первых и вторы	ых произ-
воднь	ых			24

§1. Назначение и краткая характеристика подпрограмм.

Пусть в равноотстоящих узлах сетки $\{X_i\}$:

$$\{X_i\} = a = X_0 < X_1 < ... < X_{n-1} = b$$

задана табличная функция. В данном выпуске описываются две подпрограммы:

- 1) Стандартная подпрограмма, реализующая построение интерполирующей функции y(x) (так называемой spline-функции), т.е. функции заданной на всем отрезке [a,b] и принимающей в угловых точках $X=X_i$ заданные значения y_i (определение spline-функции см. в §2).
- 2) Стандартная подпрограмма вычисления значений *spline*-функции и её первых и вторых производных в любой точке отрезка [a, b].

Указанные подпрограммы могут быть использованы, например, при табулировании некоторой функции или её первых и вторых производных, если сама функция ИЛИ её производные имеют сложное аналитическое выражение. Кроме того, таблица значений y_i может быть получена, например, в результате обработки некоторой экспериментальной информации, полученной при изучении какого-нибудь физического процесса.

Обе подпрограммы могут быть использованы на машине «Сетунь» как с одинарным магнитным барабаном (МБ),так и с МБ удвоенной емкости.

При этом в первом случае максимально возможное число задаваемых значений y_i равно 120, а во втором случае — 440.

Обе подпрограммы составлены в системе ИП-3. В соответствии с этим все исходные данные, а также промежуточные и окончательные результаты вычислений представляются в форме ИП-3.

Первая подпрограмма занимает 5 зон МБ (с 11 по 2W), вторая — 12 зон МБ (с 2X по 3Z) и расположена непосредственно 3A первой.

§2. Описание метода.

Интерполирующую функцию (*spline*-функцию) определим следующим образом [1]:

$$y(x) = y_1 + \left[\frac{\delta y_i}{h} - \frac{S_i}{2} h - \frac{\Delta S_i}{6} h \right] (x - x_i) + \frac{S_i (x - x_i)^2}{2} + \frac{\Delta S_i}{6 h} (x - x_i)^3,$$

$$x_i \le x \le x_{i+1}, \ i = 0, 1, \dots, n-2$$
(1)

где $x_i = x_i - 1 + h$, h — «шаг» сетки $\{x_i\}$, $h = \frac{b - a}{n - 1}$, $\Delta y_i = y_{i+1} - y_i$, $\Delta s_i = s_{i+1} - s_i$ и вектор $\hat{S} = (S_{0_i} S_{1_i}, \dots, S_{n-1})$ является решением системы линейных алгебраических уравнений:

$$C\hat{s} = B\hat{y} = \hat{Y}, \ \hat{y} = (y_0, \dots, y_{n-1}),$$
 (2)

Квадратные матрицы С и В имеют вид:

$$C = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 4 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 4 & 1 & \dots & 0 & 0 \\ \vdots & & & & & & \\ 0 & \dots & \dots & 1 & 4 & 1 & 0 \\ 0 & \dots & \dots & 0 & 1 & 4 & 0 \\ 0 & \dots & \dots & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$B = \frac{6}{h^2} \begin{pmatrix} 0 & 0 & 0 & 0 & \dots & 0 \\ 1 & -2 & 1 & 0 & \dots & \dots & 0 \\ \vdots & & & & & & \\ 0 & \dots & \dots & 1 & -2 & 1 \\ 0 & \dots & \dots & \dots & 0 & 0 & 0 \end{pmatrix}$$

и не требуют места в памяти для их запоминания.

Производные функции y(x) вычисляется согласно формулам:

$$y'(x) = \frac{\Delta y_{i}}{h} - \frac{S_{i}}{2}h - \frac{\Delta S_{i}}{6}h + S_{i}(x - x_{i}) + \frac{\Delta S_{i}}{2h}(x - x_{i})^{2},$$

$$x_{i} \le x \le x_{i+1},$$

$$y''(x) = S_{i} + \frac{\Delta S_{i}}{h}(x - x_{i}), \quad x_{i} \le x \le x_{i+1}.$$
(3)

Легко показывается, что функция y(x), определенная выше, непрерывна вместе со своими вторыми производными, причем $y(x_i) = y_i$, $i = 0, 1, \dots, n-1$.

Известны следующие основные свойства *spline*-функций [1]:

- 1° . Существование и единственность *spline*-функции. При любых заданных $y_{0,}y_{1,}...,y_{n-1}$ существует единственная *spline*-функция. Это следует из однозначной разрешимости системы (2).
- 2° . Свойство аппроксимации. Пусть f=f(x), $a\leq x\leq b$ четырежды непрерывно дифференцируемая функция, такая, что $f(x_i)=y_i$. Тогда для всякого $x\in [a\,,b]$.

$$|f(x)^{(k)} - y(x)^{(k)}| \le K \cdot h^{4-k}, \quad k = 0, 1, \dots 4.$$

где K — постоянная, не зависящая от h.

Отсюда следует, что y(x) равномерно сходится к функции f(x) вместе со своими первыми тремя производными, когда шаг сетки $h \to 0$. Поэтому y(x) и её производные можно считать достаточно хорошими при-

ближениями к функции f(x) и её производным соответственно.

Заметим, что интерполяционный процесс Лагранжа сходится при значительно более жестких ограничениях на интерполируемую функцию.

 3° . Свойство минимальности. Пусть Y(x), $a \leq x \leq b$ — произвольная дважды непрерывно дифференцируемая интерполирующая функция: $Y(x_i) = y_i$, $i = 0, 1, \dots, n-1$.

Тогда:

$$\int_{a}^{b} y''^{2}(x) dx \le \int_{a}^{b} Y''^{2}(x) dx ,$$

где $y(x) - spline - \phi$ ункция.

Таким образом, spline-функция имеет наименьшее значение интеграла от квадрата «линеаризованной» кривизны среди всех достаточно гладких интерполирующих функций (в том числе алгебраических и тригонометрических полиномов). Это является причиной отсутствия при интерполировании spline-функциями нежелательных «всплесков» между узлами сетки $\{X_i\}$ появляющихся, например, при интерполировании алгебраическими полиномами достаточно высокой степени.

Первая подпрограмма реализует процесс определения вспомогательного вектора $\hat{3}$ из системы урав-

нений (2), вторая — вычисление значений y(x), y''(x) и y''(x) по формулам (1), (3).

§3. Инструкция к использованию подпрограмм.

Каждая из данных подпрограмм вводится самостоятельно с фотоввода №1 в автоматическом режиме нажатием кнопки «начальный пуск».

При правильном вводе какой-либо из этих подпрограмм происходит останов $1442\mathrm{X}$ по адресу $03\mathrm{Y}$ (Ω_I) . При неправильном вводе какой-либо зоны подпрограмм происходит останов $0422\mathrm{X}$ по адресу $0Z\mathrm{X}$ (Ω_2) . В этом случае надо оттянуть на фотовводе №1 одну зону назад и нажать кнопку «пуск».

Предполагается, что к моменту обращения к подпрограммам они вместе с ИП-3 и подпрограммами «Операции типа сложения» и «Умножение и деление» находятся на магнитном барабане.

К моменту обращения к первой подпрограмме массив $\{y_i\}$ должен быть записан на МБ последовательно, а к моменту обращения ко второй подпрограмме непосредственно вслед за массивом должен быть записан также массив $\{s_i\}$, $i=0,1,\ldots,n-1$, который получается, в частности, в результате работы первой подпрограммы, или задается отдельно.

Обращение к подпрограмме, реализующей построение *spline*-функции, имеет вид:

$$(x_0)$$
: $Z\ 03\ Z3$; $(c)+31_A\Rightarrow (F)$ обобщенный переход к (x_2) : $0\ 11\ WX$; An/n обобщенный переход к подпрограмме (x_3) : Ay_0 информация для подпрограммы (x_4) : (x_5) : Ah

где An/n — обобщенный адрес начала подпрограммы;

 Ay_0 — обобщенный адрес первого значения массива $\{y_i\}$;

n — число значений y_i задаваемой информации; Ah — обобщенный адрес «шага» сетки;

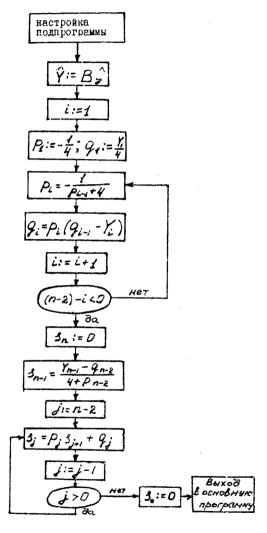
В том случае, если необходимость построения spline-функции по данной подпрограмма отсутствует, т.е. значения S_i , i=0,n-1 задаются, подпрограмму, реализующую построение интерполирующей функции, вводить не надо; зоны, которые она занимает на магнитном барабане (11-2W), могут быть использованы.

Обращение к подпрограмме вычисления значений spline-функции и её первых и вторых производных имеет вид:

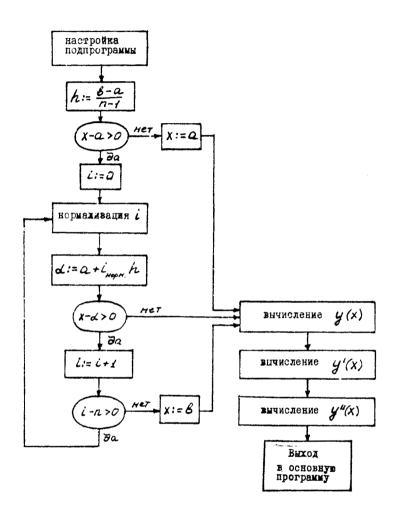
$$(x_0)$$
: $Z \ 03 \ Z3$; $(c) + 3 \ l_A \Rightarrow (F)$
 (x_1) : $Z \ WY \ 00$; $E\Pi \ Bx \ VI \ U\Pi - 3$
 (x_2) : $0 \ 2X \ WX$; An/n
 (x_3) : Aa
 (x_4) : Ab
 (x_5) : Ax
 (x_6) : Ay_0
 (x_7) : $n \cdot 3 \ l_F$

где Aa и Ab — обобщенные адреса концов отрезка [a,b];

Ax — обобщенный адрес задаваемого значения X; Ay_0 и n имеют тот же смысл, что в обращении к подпрограмме построения spline-функции.


После окончания работы этой подпрограммы результаты вычислений находятся по обобщенным адресам:

$$y(x)$$
:............0213W
 $y'(x)$:..........0213Z
 $y''(x)$:..........02132


Состояние зоны Φ_{θ} оперативной памяти при обращении к подпрограммам не запоминается — в случае необходимости это надо сделать перед обращением.

§4. Блок схемы подпрограмм

4.1. Блок схема подпрограммы построения *spline*-функции.

4.2. Блок-схема подпрограммы.

§5. Численные результаты.

<u>Пример 1</u>. Пусть $y_0=1$, $y_i=0$, i=1,2,3,4,5 ; $x_i=i$, i=0,1,2,3,4,5 . Построить spline-функцию и найти значения y(x) , y'(x) , y''(x) с шагом 0,25 на отрезке [0,3].

S_i	Результаты программы	Табличные значения
S_0	0,000000	0,000000
S_I	1,607630	1,607630
S_2	-0,430610	-0,430610
S_3	0,114828	0,114820
S_4	-0,028707	-0,028706
S_5	0,000000	0,000000

х		Результа- ты программы	Табличные значения	х		Результа- ты программы	Табличные значения
0,25	y(x) y'(x) y"(x)	0,687201 -1,217700 0,401907	0,687201 -1,217700 0,401907	1.75	y(x) y'(x) y"(x)	-0,039251 0,168361 0,078968	-0,039249 0,168360 0,0789950
0,5	y(x) y'(x) y"(x)	0,399522 -1,066980 0,803815	0,399522 -1,066984 0,803815	2	y(x) y'(x) y"(x)	0,000003 0,124403 -0,430592	0,000000 0,124402 -0,430610
0,75	y(x) y'(x) y"(x)	0,162082 -0,815791 1,205720	0,162081 -0,815792 1,205722	2,25	y(x) y'(x) y"(x)	0,019064 0,033793 -0,294253	0,019064 0,033792 -0,294252
1	y(x) y'(x) y"(x)	0,000000 -0,464125 1,607630	0,000000 -0,464125 1,607680	2,5	y(x) y'(x) y"(x)	0,019737 -0,022725 -0,157897	0,019737 -0,022726 -0,157895
1,25	y(x) y'(x) y"(x)	-0,071096 -0,125904 1,098080	-0,071097 -0,125895 1,098070	2,75	y(x) y'(x) y"(x)	0,010542 -0,045154 -0,021537	0,010541 -0,045156 -0,021537
1,5	y(x) y'(x) y"(x)	-0,073566 0,084923 0,588528	-0,073565 0,084927 0,588510	3	y(x) y'(x) y"(x)	0,000001 -0,033493 0,114822	0,000000 -0,033495 0,114820

Пример 2. Дана синусоида на отрезке [0,4]. «Шаг» сетки $\{x_i\}=0,1$. Построить spline-функцию и найти значения y(x), y'(x), y''(x) с шагом 0,5.

S_i	Результаты программы	S_i	Результаты программы	S_i	Результаты программы
S_0	0,000000	S_{I4}	-0,986164	S_{28}	-0,334124
S_I	-0,099843	S_{15}	-0,999266	S_{29}	-0,240362
S_2	-0,198938	S_{16}	-0,999849	S_{30}	-0,141370
S_3	-0,295756	S_{17}	-0,993472	S_{31}	-0,040401
S_4	-0,389637	S_{18}	-0,973220	S_{32}	0,057128
S_5	-0,479481	S_{19}	-0,947720	S_{33}	0,158331
S_6	-0,565449	S_{20}	-0,910794	S_{34}	0,255175
S_7	-0,644243	S_{2I}	-0,862747	S_{35}	0,353243
S_8	-0,718364	S_{22}	-0,809644	S_{36}	0,457595
S_9	-0,783353	S_{23}	-0,746115	S_{37}	0,544738
S_{I0}	-0,842122	S_{24}	-0,676275	S_{38}	0,558990
S_{II}	-0,892018	S_{25}	-0,598102	S_{39}	0,890471
S_{12}	-0,931697	S_{26}	-0,516656	S_{40}	0,000000
S_{I3}	-0,964658	S_{27}	-0,427666		

X		Результаты программы	Х		Результаты программы
0,5	y(x) y'(x) y"(x)	0,479425 0,877605 -0,479481	2,5	y(x) y'(x) y"(x)	0,598473 -0,801131 -0,598106
1	y(x) y'(x) y"(x)	0,841471 0,540310 -0,842122	3	y(x) y'(x) y"(x)	0,141118 -0,990025 0,353240
1,5	y(x) y'(x) y"(x)	0,997495 0,070722 -0,999266	3,5	y(x) y'(x) y"(x)	-0,350782 -0,936411 0,353240
2	y(x) y'(x) y"(x)	0,909298 -0,416188 -0,910794	4	y(x) y'(x) y"(x)	-0,756805 -0,655528 0,000015

Табличные результаты для сравнения можно взять из таблиц [2].

Литература.

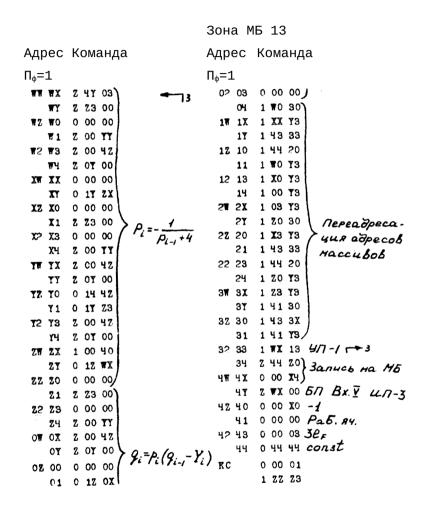
- 1. Wendroff, B. Theoretical numerical analysis, Academic Press, New York-London.
- 2. Таблицы круговых и гиперболических синусов и косинусов, Библиотека математических таблиц, выпуск I, М., Изд-во ВЦ АН СССР, 1958.

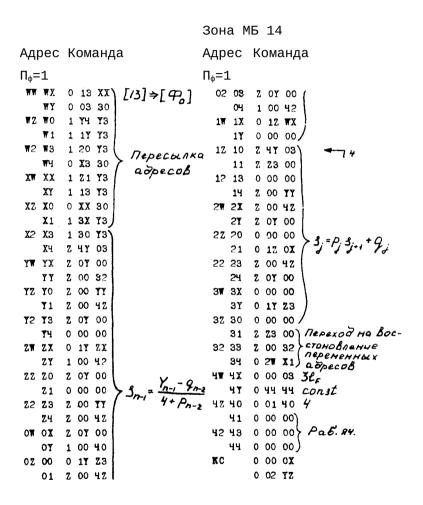
Приложение 1. Стандартная подпрограмма, реализующая построение *spline*-функции.
Зона ввода.

Адрес	Команда	Адрес	Команда
$\Pi_{\phi}=0$		$\Pi_{\phi}=0$	
WW WX	0 11 00	02 03	0 00 X H
WY	0 1W 00	04	0 XX 00
WZ WO	0 24 0X	1W 1X	0 3X 20
₩1	0 WX Z0	14	o zy ox
MS M3	Z 01 X0	17 10	0 33 23
A.A.	Z 00 X4	11	0 WC 00
XX XX	Z 00 XY	12 13	1 00 XY
XY	0 T 4 Z0	14	0 33 Z3
XZ XO	0 0X 30	54 SX	0 WO 00
X1	0 01 23	2 Y	0 00 ZX
X2 X3	0 WX 44	3Z 20	O WX OX
X4	0 WY 44	21	O WY ZO
AA AX	0 33 ZX	22 23	0 73 ZX
YY	0 X3 1X	24	O MA OX
YZ YO	O HE YS	3W 3X	
Y 1	0 34 70	37	1 44 2 x ⊊ ,
15 13	0 02 3Y	3Z 30	0 00 00
7 4	0 20 10	31	0 00 00
ZW ZX	0 42 2X 522	32 33	0 03 00
ZY	0 00 00	34	C 40 00
ZZ Z0	0 33 ZX	YW YX	0 00 01
21	0 34 0X	47	Z 00 X1
22 23	O WX ZO	4Z 40	0 00 CZ
34	0 1X 00	41	1 00 3Z
OM OX	0 00 00	42 43	0 00 00
OY	0 30 00	44	1 YS W1
oz 00	0 01 X0	KC	0 00 02
01	0 FX 20		1 00 32

Зона контрольных сумм.

Адрес	Команда	Адрес	Команда
$\Pi_{\varphi}=1$		$\Pi_{\phi}=1$	
WE WX	0 00 01)	02 03	0 00 00
WY	Z XZ W2 } Z	0년	0 00 00
WZ WO	0 00 03)	1W 1X	0 00 00
₩1	1 Y3 Z#} \(\sum_{\begin{subarray}{c} \cdot 2 \\ \express{2} \express{2} \\ \expr	17	0 00 00
T2 T3	0 00 01	12 10	0 00 00
₩4	$\begin{bmatrix} 0 & 00 & 01 \\ 1 & 77 & 73 \end{bmatrix} \sum_{3}$	11	0 00 00
XW XX	0 00 0X)	12 13	0 00 00
XY	0 02 YZ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	14	0 00 00
XX X0	0 00 1X}	2W 2X	0 00 00
X1	0 40 32} Z _{2w}	24	0 00 00
X2 X3	0 00 00	2 7 20	0 00 00
X 4	0 00 00	21	0 00 00
YW YX	0 00 00	22 23	
77	0 00 00	24	0 00 00
YZ YO	0 00 00	3# 3X	0 00 00
Y1	0 00 00	37	0 00 00
12 13	0 00 00	3 Z 30	0 00 00
7 4	0 00 00	31	0 00 00
ZW ZX	0 00 00	32 33	0 00 00
ZY	0 00 00	34	0 00 00
ZZ Z0	0 00 00	4# 4X	0 00 00
Z 1	0 00 00	47	0 00 00
22 23	0 00 00	42 40	0 00 00
24	0 00 00	41	0 00 00
OM OX	0 00 00	42 43	0 00 00
01	0 00 00	44	0 00 00
0Z 00	0 00 00	K C	0 00 00
01	0 00 00		1 Y3 W1


Настройка подпрограммы.


Вычисление $\hat{Y} = B \hat{v}$.

3она МБ 12 Адрес Команда Адрес Команда $\Pi_{\phi}=1$ $\Pi_{\phi}=1$ 02 03 明育 青X 1 YO 30 1 3Y 3X J 72 1 XO 1X 477-1 F ₹Y 1 24 3X 04 TZ TC 1 4Y 20 1W 1X Z 4Y 03 Z X3 00 ₩1 1 YO Y3 11 Z 00 YY W2 W3 1 31 30 17 10 1 X3 Y3 Z 00 42 Z 0Y 00 XW XX 1 WX YO 12 13 1 42 T3 1 00 42 14 II 2T 2X 0 12 0X XZ XO 2 4Y 03 Z 0Y 00 2Y 0 00 00 X1 22 20 Z Z3 00) MEREXOD HA BOCCTA-X2 X3 0 00 00 Z 00 32 MOBREHUE REPEREN-21 TЧ Z 00 YY O ST WY HOLK adpecab 22 23 2 00 42 YW YX 24 0 00 1X TY Z OY 00 3W 3X 0 00 00) YZ YO 0 00 00 Pab. 84. 1 00 40 3 Y 0 1Z 0X **T1** Z 00 4Z 3Z 30 0 00 30 1 Y2 Y3 1 00 30 Pa5. 84. 31 PT. Z 0Y 00 32 33 0 01 TO -2 1 00 42 ZW ZX 0 00 03 34 ZY 0 1Y Z3 4W 4X C 00 30 1 00 42 ZZ Z0 044 44 const 1 TO 80 4 Y **Z1** 4Z 40 0 00 00 1 22 23 1 34 33 0 00 00 1 41 1 47 20 24 0 00 00) 42 43 XO WO 1 TO TS Переадре-0 00 00 1 X3 30 44 OY cayur KC 0 00 03 1 34 83 0Z 00 1 Y3 ZW 01 1 X3 Y3

Вычисление прогоночных коэффициентов. Прямой ход.

Вычисление прогоночных коэффициентов. Обратный ход.

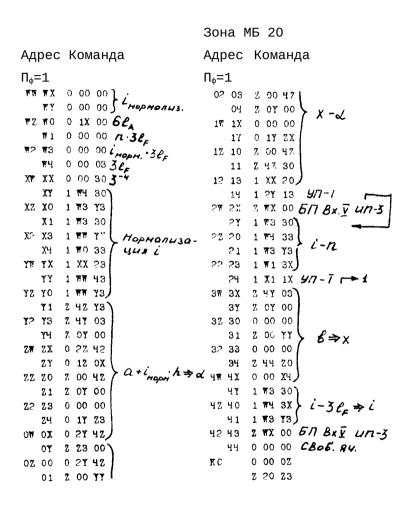
Восстановление обратных адрсов. Вычисление $\frac{6}{h^2}$.

	Зона МБ 2W
Адрес Команда	Адрес Команда
Π_{φ} =1	Π_{φ} =1
WW WX 1 2Y 30 WY 1 34 33 WZ WO 1 4Y 20	02 03 Z 40 30 04 1 01 Y3 1W 1X Z 4X 30
#1 1 2Y Y3 BOCCTANOBNEM NEPEMBHHHH 1 3Y 3X 30 ADPECOS B 30HE [12]	17 1 13 T3 12 10 2 4Y 03 11 2 0Y 00
XW XX 1 3X Y3 XY 1 WX 13 XZ XO Z WX 00)	12 13 0 00 00 14 Z 00 YY 2W 2X Z 00 4Z BELYUCAE
X1 1 13 30 X2 X3 1 4X 3X X4 0 4Y 20	27 2 X3 00 27 20 0 12 0X 21 2 00 47
TW TX 1 13 Y3 YY 1 30 30 YZ Y0 1 20 Y3	22 23 Z 0Y 00 24 1 00 4X 3W 3X 0 12 WX
71 1 3X 30 72 73 1 4X 3X BoceronoBne	3Y 0 12 4Z) 3Z 30 0 12 X3 [P _o] ⇒[12]
ZW ZX 1 3X Y3 HOLX adjects ZY 1 30 Y3 ZZ ZO 1 41 30 B 30He [14]	Tepexod K
Z1 1 4X 3X Z2 Z3 1 41 Y3	47 0 44 44 const
0W 0X 0 0Y 00) 0Y 2 03 23)	41 0 00 00 (СВОБОДНЫЕ 42 43 0 00 00 (Вчейки 44 0 00 00)
0Z 00 Z TY 00 Bosbpam 01 0 00 00 nporpanny	KC 0 00 1X 0 40 32

Приложение 2. Стандартная подпрограмма вычисления значений *spline*-функции и ее первых и вторых производных.

Ввод подпрограммы.

Адрес Коман	да Адрес	Команда
$\Pi_{\phi}=0$	Π_{ϕ} =0	
## #X 0 2X 00	02 03	0 00 X 4
WY 0 13 00	04	0 XX 00
₹2 ₹0 0 24 0X	1W 1X	0 3X ZO
W1 0 WE ZO	17	O ZY OX
₩2 ₩3 Z 01 X0	12 10	0 32 73
₹4 2 00 X 4	11	0 WO 00
XW XX Z 00 XY	12 13	1 00 XY
XY 0 F4 20	14	0 33 Z3
XZ XO O OX 30	2 ਜ 2X	0 #0 00
X1 0 0W 23	21	0 00 ZX
XS X3 O MX AA	22 20	
X4 0 #1. 114	21	0 FY ZO
YW YX O 33 ZX	22 23	
YY 0 X3 1X	24	
AX AO O AM A3		0 W1 13
Y1 0.34 Z0	31	1 44 2X S2,
Y2 Y3 0 0Z 3Y	32 30	0 00 00
Y4 0 Z0 10	31	0 00 00
Z# ZX 0 45 3X		
ZY 0 00 00	34	0 40 00
ZZ ZO O 33 ZX	4¥ 4X	0 00 01
Z1 0 34 0X	47	0 Z2 3Z
Z2 Z3 0 WX Z0	42 40	0 00 0Z
Z4 0 1X 00	41	0 1Y X1
0# 0X 0 00 00	42 43	
0A 0 30 00	dñ	0 YX Z2
0Z 00 0 01 X0	RC	0 00 0Z
01 0 WX Z0		0 1Y X1

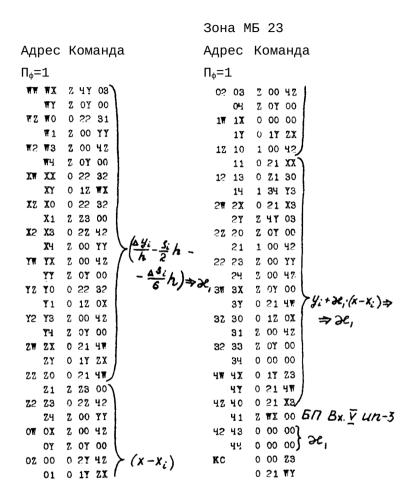

Зона контрольных сумм.

Адрес Команда	Адрес	Команда
$\Pi_{\phi}=1$	$\Pi_{\phi}=1$	
FW WX 0 00 0X)	02 03	0 00 00
WY 1 2X 30} \(\sum_{2x} \)	04	0 00 00
WZ WO 0 00 0X }	1W 1X	0 00 00
#1 1 #3 3Z \ \(\sum_{2y}\)	1Y	0 00 00
#2 #3 0 00 Z3} <u></u>	17 10	0 00 00
F4 0 01 22 \ \(\Sigma_{22}\)	11	0 00 00
XV XX 0 00 0Z}	12 13	0 00 00
XY Z 20 23 \ \(\sum_{20} \)	14	0 00 00
XZ XO O OO OZ}	2¥ 2X	0 00 00
$x_1 \rightarrow x_2 \rightarrow x_1$	2 Y	0 00 00
x5 x3 0 00 00} ~	22 20	0 00 00
X4 0 4# 30 \ 22	21	0 00 00
YF YX 0 00 23) 5	22 23	0 00 00
YY 0 21 WY \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Sri	0 00 00
$\{x_1, x_2, x_3, x_4, x_5, x_6, x_6, x_6, x_6, x_6, x_6, x_6, x_6$	XE FE	0 00 00
	31	0 00 00
AS A3 0 00 0A } 2	32 30	0 00 00
74 Z 12 XY \ \Sigma_{3w}	31	0 00 00
Zw Zx 0 00 Z2}	32 33	00 00
$\sum_{2Y} \frac{1}{1} \frac{12}{13} \sum_{3X} \frac{3X}{3X}$	34	0 00 00
	чт чх	0 00 00
	44	0 00 00
Z2 Z3 0 00 0W} Z4 0 W2 ZX} \(\sum_{3z}\)	42 40	0 00 00
	41	0 00 00
OW OX 0 00 00	42 43	0 00 00
_0Y0_00_00	44	0 00 00

Поиск отрезка $[x_i, x_{i+1}]$, в котором находится задаваемая точка x. Начало вычисления y'(x).

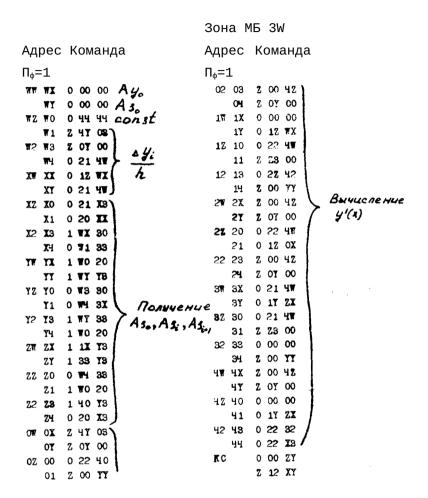
		Зона МБ 2Z
Адрес	Команда	Адрес Команда
$\Pi_{\phi}=1$		Π_{ϕ} =1
सत स	Z 4Y 03)	02 03 0 07 30 > Merecour-
ΨY	7 0Y 00	CH 127 TB (KO adpecas
W2 W0	0 00 00	1W 1X 0 21 X3)
₩.1	2 00 YY	17 Z 47 03 Ĵ
W2 W3	Z 00 42	17 10 2 OY OO
₩4	z CY 00 > x-a	11 0 00 00
XX XX	0 00 00 /	12 13 Z 00 YY
XY	O 1Y ZX	14 2 00 42
XZ XO	Z 00 4Z	27 2X 7 0Y 00 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
X1	Z 4Z 30	2Y 0 00 00 Y
X2 X3	1 40 20/	2Z 20 0 1Y ZX
Xч	1 Y1 1X 4/7-7 -1	21 0 21 4त्त्र)
AM JX	7 03 23 Переход на	22 23 Z Z3 UO)
YY	Z WY 00 (npodonokehu	24 0 27 42 h ⇒ V
YZ YC	0 20 XY) noonporpann	6/ 3# 3X ? 00 YY
Y 1	Z 4Y 03)	3Y Z 00 4Z)
AS A3	2 OY 00	37. 30 Z 03 Z3) Repexed Ha
¥Ч	0 00 00	31 7 WY 00 podon menue
ZV ZX	$z \rightarrow x$	32 33 0 37 T1) · y'(x)
ZY	0 00 00/	34 0 11 00 8 6
77 ZO	7 44 20	4W 4X 0 00 00 7
7.1	0 00 X4)	44 0 00 00 1 HOPMRAUS.
22 23	Z 03 Z3) Nepexod Ha	42 40 0 00 30 1;3 ; const
24	Z FY 00 , npodonacenu	
OW OX	0 20 XX) noguborbann	7 6
OY	0 21 XX) - Hayano BW	
0Z 00	0 21 30	***
01	1 11 73	0 01 22

Поиск отрезка $[x_i, x_{i+I}]$, в котором находится задаваемая точка x.


Вычисление y(x).

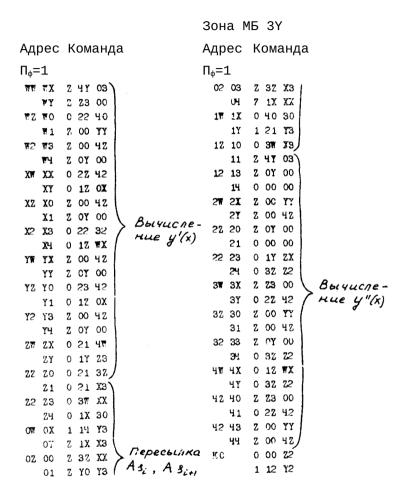
3она МБ 21 Адрес Команда Адрес Команда $\Pi_{\phi}=1$ $\Pi_{\phi}=1$ FT TX 2 4Y 03) 02 03 Z OY 00) Z 0Y 00 0.22 42 94 Nonyyehue FZ FO 0 27 43 1W 1X Z 00 TY ₩1 Z 00 YY 1 Y 2 00 42 ₩2 ₩3 0 00 00 12 10 Z OY 00 ₩Ч Z 03 Z3) 11 1 00 47 REPEXOD HO XW XX Z WY OO 0 1Z WX 12 13 nonyyenue As. 1 00 47 XY 0 3Z OX 14 0 22 XX [22] → [P₂] XZ XO 0 00 00 7 2# 2X 1 43 30) Bacwaka X1 0 00 00 9 2 Y X2 X3 0 20 XX 27 20 0 44 73 (a8) seca A y. 0 22 X3 [4.] ⇒ [22] 21 1 43 30 χч YW YX 0 W3 33 22 23 2 WX 00 6/7 Bx V Un-3 1 44 20 24 0 00 03 3es YY Засылка SF 3X 0 00 00) YZ YO 1 0Y Y3 adpecab 0 00 00 \$ Y1 0 W4 3X 3**Y** 37 30 0 00 001 72 Y3 1 44 20 0 00 00 31 **Y**4 1 Z1 Y3 32 33 0 00 00 ZW ZX 0 20 X3 34 0 00 001 ZY Z 4Y 03 년위 년X 0 00 00 ZZ ZO Z OY OO Z1 0 00 00 47 0 00 00 42 40 0 00 00 22 Z3 Z 00 YY 0 00 00 41 2 00 42 Z4OF OX Z OY OO 42 43 0 00 00 Ay. 44 0 44 44 OY 0 00 00 ĸc 0 00 02 O 1Y ZX 0Z 00 1 12 01 1 00 47 01

Вычисление y(x).


Вычисление v(x).

Вычисление y(x).

3она МБ 24 Адрес Команда Адрес Команда $\Pi_{\phi}=1$ $\Pi_{\phi}=1$ XW WX 02 03 Z 4Y 03 Z Z3 00 WY Z OY OO 0 28 42 04 WZ WU 0 28 42 1W 1X Z 00 YY Z 00 YY Z 00 4Z ₹1 1Y W2 W3 Z 00 4Z 1Z 10 Z 0Y 00 W4 Z X3 00 1 00 42 11 XW XX 0 12 0X 12 13 0 1Z OX 14 Z 00 42 XY 1 00 42 XZ XO Z OY OO 27 2X Z 0Y 00 2**Y** 0 22 32 X1 0 22 4W 22 20 0 1Z 0X X2 X3 Z 00 YY 21 Z 00 4Z X4 Z 00 4 Z YW YX Z OY OO 22 23 Z 07 00 TY 1 00 42 0 21 4 YZ YO O 12 OX 9W 3X 0 1Y 23 0 21 37 37 Y1 Z 00 4Z 3Z 30 0 21 X3 Y2 Y3 Z OY 00 31 2 03 23) Mesex od Ha 0 21 4 YЧ 32 33 Z WY 00 } BHYLICAEHUE 0 1Y Z3 ZW ZX ЭН 0 2Z 0Y 0 21 4 ZΥ 0 00 00' ZZ ZO Z 73 00 чж чх 0 00 00 21 0 22 42 0 00 00 4Z 40 Z2 Z3 Z 00 TY 0 00 00 41 Z4 Z 00 4 Z OW OX Z OY OO 42 43 0 00 2X) 1 WO 44 OY 0 22 32 44 02 00 0 12 WX KC 0 00 23 0 YY 30 0 22 32 01


Вычисление y'(x).

Вычисление y'(x).

Зона МБ ЗХ Адрес Команда Адрес Команда $\Pi_{\phi}=1$ $\Pi_{\phi}=1$ NV TX 02 03 Z 4Y 03 0 2Y 4Z ΨY Z 0Y 00 04 O 1Y ZX WZ WO 0 22 31 18 1X Z 00 4Z ₩1 Z 00 YY 1Y Z 0Y 00 72 73 2 00 42 12 10 0 00 00 774 Z 0Y 00 O 1Y ZX 11 0 23 42 XW XX 0 22 32 12 13 ΧY C 1Z WX Z Z3 00 14 XZ XO Z 0C 4Z 2¥ 2X 0 00 00 Buyucne-Z 00 YY X1 Z 0Y 00 HUE Y'(x) 2Y Вычисле-X2 X3 0 2Z 4? SZ 20 Z 00 4Z HUE Y'(X) 21 Z 0Y 00 ХH 0 1.Z 0X Z 00 4Z 22 23 0 23 42 XX WY 24 0 1Z 0X YV Z 0Y 00 37 3X 2 00 42 YZ YO 0 21 47 Y1 0 1Y ZY 34 Z OY 00 32 30 0 21 4 Y2 Y3 0 21 47 YЧ 0 21 X3 31 0 1Y Z3 32 33 0 21 41 C 3# XX ZW ZX 34 Z Z3 00 Repecblaka 7.Y 0 1X 30 4W 4X 0 23 42 ZZ Z0 1 2X Y3 A si Z 00 YY 47 21 CX 778 O 4Z 40 Z 00 4Z Z 4Y 03 Z2 Z3 41 Z X3 00 Z OY CO 24 42 43 0 1Z OX 0 22 42 OW OX ųų 0 23 42 OΥ Z 00 YY 0Z 00 2 00 42 KC 0 00 22 01 Z OY 00 1 12 13

Вычисление y'(x). Вычисление y''(x).

Вычисление y''(x).

Зона МБ 3Z Адрес Команда Адрес Команда $\Pi_{h}=1$ $\Pi_{\phi}=1$ FW EX 02 03 Z 4Y 03 1 13 Y3 Z CY 00 0 21 X3 ΨY 04 NonyyeHue 72 TO 0 2Y 4Z 1W 1Y Z 4Y 03 A sn ₩ 1 0 1Y ZX Z 0Y 00 1 Y #2 #3 2 00 42 0 2Y 43 1Z 10 ٣H 2 OY 00 Z 00 YY 11 XV XX 0 00 00 12 13 0 00 00 χy 0 1Y ZX 14 Z 44 ZO Запись на МБ 0 00 X4} XZ XO Z 00 4 Z 2¥ 2X Вычисле-Z 0Y 00 2**Y** Z 03 Z3) X 1 REPEXOD HA HUE Y"(X) X2 X3 1 00 22 22 20 Z WY OC > npodon жение 0 21 X3) nodnporpamme ΣЧ 21 0 1Z 0X 22 23 0 00 00 2 00 42 XY YX 24 0 00 00 YY Z OY OO YZ YO 0 00 00 3₹ 3X 0 00 00 ЗΥ 0 00 00 Y 1 0 17 23 32 30 0 00 00 45 X3 0 21 32 0 00 00 74 0 21 X3 31 z 03 z3) 32 33 0 00 00 ZW ZX BOSBBOT ZY Z #Y 00 B OCHOBHYHO 34 0 00 00 POSPONMY ZZ ZO O OO OO) 48 4X 0 00 00 ЧY 0 00 00 21 0 00 00 0 00 00 4Z 40 Z2 Z3 U 00 00 Pa6. 84. 0 00 00 41 **Z**4 0 00 00) Z 44 ZO 42 43 0 00 00 OW OX OY C 00 X.1 44 0 00 00 F.C 0 00 ZW 02 00 0 21 XX 0 W2 ZX 0 XO 30 01

Серия: «Математическое обслуживание машины «Сетунь».

Выпуск 1.

ЖОГОЛЕВ Е.А. ОСОБЕННОСТИ ПРОГРАММИРОВАНИЯ И МАТЕМАТИЧЕСКОЕ ОБСЛУЖИВАНИЕ МАШИНЫ «СЕТУНЬ».

Выпуск 2.

Фурман Г.А. ИНТЕРПРЕТИРУЮЩАЯ СИСТЕМА ДЛЯ ДЕЙСТВИЙ С КОМПЛЕКСНЫМИ ЧИСЛАМИ (ИП-4).

Выпуск 3.

Франк Л.С, Рамиль Альварес X. ПРОГРАММА ВЫЧИСЛЕНИЯ ЗНАЧЕНИЙ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ ДЛЯ ИП-2. Уточнение к выпуску 3 опубликовано в выпуске 19.

Выпуск 4.

Жоголев Е.А., Есакова Л.В. ИНТЕРПРЕТИРУЮЩАЯ СИСТЕМА ИП-3. Поправка к выпуску 4 опубликована в выпуске 9.

Выпуск 5.

Фурман Г.А. ПОДПРОГРАММА ВЫЧИСЛЕНИЯ ВСЕХ КОРНЕЙ МНОГОЧЛЕНА ДЛЯ ИП-4.

Выпуск 6.

Прохорова Г.В. ИНТЕРПРЕТИРУЮЩАЯ СИСТЕМА ДЛЯ ДЕЙ-СТВИЙ С ПОВЫШЕННОЙ ТОЧНОСТЬЮ (ИП-5). Изменение к выпуску 6 опубликовано в выпуске 11. Выпуск 7.

Гордонова В.И. ТИПОВАЯ ПРОГРАММА РАСЧЕТА КОРРЕЛЯЦИ-ОННЫХ И СПЕКТРАЛЬНЫХ ФУНКЦИЙ.

Выпуск 8.

Бондаренко Н.В. СИСТЕМА ПОДПРОГРАММ ВВОДА И ВЫВОДА АЛФАВИТНО-ЦИФРОВОЙ ИНФОРМАЦИИ ДЛЯ ИП-3.

Выпуск 9.

Черепенникова Ю.Н. НАБОР ПОДПРОГРАММ ДЛЯ ВВОДА И ВЫВОДА ЧИСЛОВОЙ ИНФОРМАЦИИ В СИСТЕМЕ ИП-2.

Выпуск 10.

Жоголев Е.А., Лебедева Н.Б. СИМПОЛИЗ 64 — ЯЗЫК ДЛЯ ПРОГРАММИРОВАНИЯ В СИМВОЛИЧЕСКИХ ОБОЗНАЧЕНИЯХ.

Выпуск 11.

Прохорова Г.В. ПОДПРОГРАММЫ ВВОДА И ВЫВОДА ЧИСЛОВОЙ ИНФОРМАЦИИ ДЛЯ ИП-5. Изменение к выпуску 11 опубликовано в выпуске 17.

Выпуск 12.

Черепенникова Ю.Н. СТАНДАРТНАЯ ПОДПРОГРАММА ДЛЯ РЕ-ШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ (в системе ИП-2). Выпуск 13.

Лебедева Н.Б., Рамиль Альварес X. ИНСТРУКЦИЯ ИСПОЛЬ-ЗОВАНИЯ СИСТЕМЫ АВТОМАТИЧЕСКОГО КОДИРОВАНИЯ ПОЛИЗ.

Выпуск 14.

Черепенникова Ю.Н. ПОДПРОГРАММЫ ВВОДА И ВЫВОДА ЧИ-СЕЛ В СИСТЕМЕ ИП-4.

Выпуск 15.

Федорченко В.Е. МОДЕЛИРОВАНИЕ РАВНОМЕРНЫХ ПСЕВДО-СЛУЧАЙНЫХ ЧИСЕЛ НА МАШИНЕ «СЕТУНЬ».

Выпуск 16.

Черепенникова Ю.Н. ТИПОВАЯ ПРОГРАММА ДЛЯ РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ.

Выпуск 17.

Гордонова В.И. СТАНДАРТНАЯ ПОДПРОГРАММА ДЛЯ ВЫЧИС-ЛЕНИЯ СОБСТВЕННЫХ ЗНАЧЕНИЙ И СОБСТВЕННЫХ ВЕКТОРОВ ВЕЩЕСТВЕННОЙ МАТРИЦЫ, ИМЕЮЩЕЙ ТОЛЬКО ВЕЩЕСТВЕННЫЕ СОБСТВЕННЫЕ ЗНАЧЕНИЯ (В СИСТЕМЕ ИП-3).

Выпуск 18.

Титакаева П.Т. СТАНДАРТНАЯ ПОДПРОГРАММА РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬ-НЫХ УРАВНЕНИЙ В СИСТЕМЕ ИП-3. Выпуск 19.

Жоголев Е.А. ИНТЕРПРЕТИРУЮЩАЯ СИСТЕМА ИП-2.

Выпуск 20.

Черепенникова Ю.Н. СТАНДАРТНАЯ ПОДПРОГРАММА ВЫЧИС-ЛЕНИЯ ОПРЕДЕЛИТЕЛЯ (в системе ИП-2).

Выпуск 21.

Гордонова В.И. ТИПОВАЯ ПРОГРАММА РЕШЕНИЯ СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ С СИММЕТРИЧНОЙ ПОЛОЖИТЕЛЬНО ОПРЕДЕЛЕННОЙ МАТРИЦЕЙ МЕТОДОМ КВАДРАТНОГО КОРНЯ (ЛАУСК).

Выпуск 22.

Титакаева П.Т. СТАНДАРТНАЯ ПОДПРОГРАММА GI ВЫЧИСЛЕ-НИЯ ЗНАЧЕНИЙ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ В СИСТЕМЕ ИП-3.

Выпуск 23.

Гойхман Г.Я. СТАНДАРТНАЯ ПРОГРАММА ОБРАЩЕНИЯ МАТРИ-ЦЫ МЕТОДОМ ОКАЙМЛЕНИЯ (в системе ИП-3).

Выпуск 24.

Дрейер А.А., Черепенникова Ю.Н. АВТОМАТИЗИРОВАННАЯ СИСТЕМА СТАТИСТИЧЕСКОЙ ОБРАБОТКИ МАТЕРИАЛОВ ИЗМЕРЕНИЙ НА ЭЦВМ «СЕТУНЬ».

Выпуск 25.

Жоголев Е.А., Есакова Л.В. ИНТЕРПРЕТИРУЮЩАЯ СИСТЕМА ИП-3 (издание второе, исправленное).

Выпуск 26.

Жоголев Е.А., Титакаева П.Т. СТАНДАРТНАЯ ПОДПРО-ГРАММА РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ МЕТОДОМ ПЛАВАЮЩИХ МАСШТАБОВ (в системе ИП-2).

Выпуск 27.

ГОЙХМАН Г.Я., ГОРДОНОВА В.И. ПРОГРАММА ВЫЧИСЛЕНИЯ СОБСТВЕННЫХ ЗНАЧЕНИЙ И СОБСТВЕННЫХ ВЕКТОРОВ СИММЕТ-РИЧНОЙ МАТРИЦЫ В РЕЖИМЕ ФИКСИРОВАННОЙ ЗАПЯТОЙ.