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Methods of computer algebra connected with execution N-ary (N > 2)
operations in afinite ring for specialized computing devices which operate
in the modular arithmetics is developed. Is displayed that traditional
methods of execution of N-ary operations which grounded on a
"horizontal" method are oriented on a small amount of operands. Higher
outcomes can be obtained with help paralld and sequential are N-ary of
arithmetic devices which have grounded on a "vertical" method.

1. Introduction

The specialized computing devices (SCD) are applied to implementation
of algorithms of digital signals processing (number-theoretic conversions,
of cyclic convolution) [1—4], cryptography problems [5], control and
simulations problems [6, 7], neural-like networks problems [8]. The
important stage of development of SCD is multisequencing computations
with the help of the modular arithmetics (MA) [10—12].



Today main attention of the experts is directed on increase of efficiency
of execution of not modular operations [13, 14] and development of
methods of a check and reconfiguration of SCD by redundant MA [15].
The following stage of deveopment of SCD, which operate in the MA,
can be integration of operations, which arerealized in a paralle way. The
integration of operations is supposed to be realized by transition from
binary to N-ary modular operations. However now methods of
implementation of N-ary operations on the given the modulo are
advanced insufficiently. It is an obstacle in paths of implementation of
the second stage of development of SCD. Therefore purpose of paper is
to develop the effectiveness of algorithms and devices which are intended
for implementation of N-ary operations of MA.

On the basis of Chinese remainder theorem [10—12] any integer X 3 0
can be represented by a sequence of bit digits

{x}= (x(l), x@ K, x® )
where x@) =|X] m i=12 K,k; my, m,, K, my
(m, <m, <K<m, ) — basis.

The representation of the MA isunique, if 0£ X <M =mm, Km, and
god (m,m;)=1for "itj, i,j=12K,Kk.

The operations of arithmetics MA are fulfilled by a paralld way and
separately for each unit MA and therefore faster, than in traditional
arithmetics, in which there areinterbit links.

The existing algorithms MA use binary operations x(’ =‘xf) * xg)‘m
(i=12K,k):
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Here symbol * means one of modular operations (addition or multiplying
modulo m).

The N-ary opeation modulo m we shall name the operation

* X(I)

y(I) = J
j=1

m

@
(1) Xz @ (k) x5

L x x(K)
\b’/ E,mod My
(1) (k)
Theresiduals x®, x@ | K, x® are represented with the help of a binary

number system or unitary code. Let's consider a case of usage of a binary
number system:

x =al),  2“t+K+al) 2+af);,
wheea® 1{03}, i=12 K,k r=01K,d-1 j=12Kn

Here the value of themodule m and bit grid d are connected as
d = dog,(m - 1)(j, where gA() means the least integer > A.

2. N-ary operator of addition modulo m
2.1. Traditional architectures of N-ary summators modulo m

2.1.1. The "horizontal" N-ary summator modulo m of a paralle
type. The structure of the traditional N-ary summator modulo m, of a
paralld type has a tree structure with dog,(n- 1)) levels (figure 1) and
n- 1 by binary summators.



Hold time of this summator Tg=dog,(n- )5, Where t¢g time of
operation of one binary summator modulo my .
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Figure 1. The" horizontal" N-ary summator modulo m of a
paralle type

2.1.2. The "horizontal" N-ary summator modulo m of a sequential

type. Thetraditional N-ary summator of a sequential type consists of the
paralld-sequential register of shift and accumulating binary summator
modulo m (figure 2). Amount of sync signals necessary for execution

for the operation
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m
corresponds to total of addends and equally n.
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Figure2. "Horizontal" N-ary summator modulo m of a sequential type

2.2. Algorithms and devices of N-ary addition modulo m, grounded
on a"vertical" method

2.2.1. The algorithm of "vertical" N-ary addition modulo m . Let's
consider algorithm N-ary addition module m;, which works not with

numbers x{) (j=12,K,n), but with digits a’}, a’, K, a",
(r=d-1K,L0).

Algorithm 2.1.
Step 1. Arerealized d of count operations of units modulo my :
. n . . n . . n .
x{P=18a | . K, x=&al}l | x{’=|&af)
=1 m j=1 m j=1 m




Step. 2. Realizing modular products of values x) (r =0,1, K, d- 1) on
2" (r=0,1,K,d-1):

N L) ade1 N1 N
=Rz D =03 D =)
Sep 3. The outcome of N-ary addition is:

d-1 .
axy
j=0

y0 =

m

2.2.2. The "vertical" N-ary summator modulo my of a parallel type.
The structure of algorithm 2.1 can be presented as follows:

The device for parald implementation of algorithm 2.1 (figure 3)
XS) = (ag-)m' ag-)z,l' L, a1(|)1 ag,)l)
X(zl) = (ag-)xz' ag-)z,z' L, a1(|)2 ag,)z)
M M M M . M .
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m
contains the register of storage of binary bit digits, d of paralld counters
of units (devices of convolution) ST modm, and d- 1 of binary
summators Smod m; . If on outputs of paralld units counters the unitary
code, the additional encoders CD-1 ... CD-d of the unitary code in the
code of a binary number system are instaled. For the usually used



module 2 £ m <128 a tree of binary summators— 1 ... 3 levels. The
main device of the considered summator — counter of units ST mod m, .

The principles of construction of such devices are well known [16—18],
however, probably best outcomes were obtained in [19, 20].
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Figure 3. The " vertical" summator modulo m

Numerical example of addition of 39 operands modulo 13:



2.2.3. The" vertical" N-ary summator modulo m of a sequential
type. We use numbers x ., K, x", x {", from algorithm 2.1 for
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construction of the formula (principle of Horner):
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The summator realizing this formula contains the paralld-sequential
register of shift the counter of units STmodm in the unitary code
(encoder CD is not used) multiplying tube on 2 modulo m, and binary
adderaccumulator modulo m, (figure 4).
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Figure4. The" vertical" N-ary summator modulo m of a
sequential type
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Figure5. Structure of the multiplying tube on 2 modulo m

The principle of operation of N-ary summator is completely defined by
the last obtained formula. The last clock tick of operation of the

summator is used for addition x§".

The unitary code is convenient for execution of the operation of
multiplying on a constant in a finite ring. Thus the operation of
multiplying is defined by the scheme of swaps of bits. The example of
construction of the multiplying tube modulo 5 operation using this
principle represented on afigure 5.

3. "Vertical" N-ary the converter of the code of a binary number
system in the code modulo m

3.1. Algorithm of “vertical" N-ary conversion of a binary number
system in the code modulo m

Let's consider the operator of the following sort:

yO =

m

S
an
j=1

where for numbers X, X,, K, X, issatisfied condition

S
0£ & X; <M =mm, Km,
j=1
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and

Xy :bv-mzv-l +b,. 2,12\/-2 +K+by12+bg 4,
X :bv-J,zzv-l +bv_2’22"'2 +K+Dby 2+ 5,
N
Xs1 :bv-Ls-lzv-l +hy. 2,s-12v-2 +K+b 1240y g1,
Xs :bv-l,szv-1 "'bv-z,szv-2 +K+bL52+bO,s1

b;T{03 r=01K,v-1j=12K,s

Algorithm 3.1.
Sep 1. Arerealized v of count operations of units modulo m:
. S . S . . S .
b =|&b, ;| . K b =ab" , by =4
j=L m =y =y

Step. 2. Realizing modular products of values b (r =0,1, K, v- 1) on
2" (r=0,LK,v-1:
m

0l e
82 =|by 2"

m

m
M

50 =p0f2],,|
D =p .
Sep 3. Consider, that

kf(()') _ X1(I)1 tgl(u) - Xg) K, t%[)z — Xr(1l-)1’ tﬁ\g)l = Xr(]l)

m

and fulfil algorithm 2.1.

3.2."Vertical" N-ary the converter of the code of a binary number
system in the code modulo m
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The structure of algorithm 3.1 can be presented as follows:

X1 = (by.g,1, L, by 1, by 1),
X = (by.q,2, L, by 2, by 2),
M M M M
Xs=(by.ys L, b s bps)
o0 L b} o]
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The block diagram of a paralld summing converter on a figure 6 is
represented. The algorithm of operation of a converter of a sequential
typeis defined by the formula:
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Figure6. " Vertical" N-ary the converter of the code of a
binary number system
in the code modulo m

The schematic diagram of the N-ary converter of a sequential type will
coincide with the scheme of the "vertical” summator of a sequential type
(figure 4). But the sizes of an input of the serialparalld register of shift
and amount of inputs of the counter of units ST-modm will be
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distinguished. An amount of clock ticks of dating pulses necessary for
operation of a converter equal v.

4. Principle of N-ary multiplying modulo m

For implementation of N-ary multiplying modulo m it is possible to use
property of a discretelog:

n .
a Logy xg')

j=1

i (m) i (m)
where Log, A —discrete logarithm from A modulo m and basis g

no
Logy O xg')
=1

(g — primitiveradical); j (m ) — function of Euler from value m;

i (m)=pftp3rt K pH(py - 1Yp2 - YK (p, - 1),
where pq, p,, K, p, —simplefactors.

Then the structure of algorithm of N-ary multiplying modulo m can be
presented as follows:

@

1
VAR 7 3
o qf) L q¥
modj (m )
Q(i)
v
y®

. . . n .
here qf) =Logy x{", where j=1,2,K,n; Q¥ =|& Logyx"

j=1

i (m)

y® outcome of calculation of an inverse discrete logarithm.
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For implementation of N-ary multiplying modulo m the device,

introduced on a figure 7 can be used. The device contains ROM-1.1 ...
ROM-1.n, intended for storage of values of a discrete logarithm; the N-
ary summator modulo j (m;) or Py (m;); ROM-2 intended for storage

of outcomes of inverse discrete logarithm.

X X L X
vy 3 : 4
ROM 1.1 ROM 1.2 L ROM 1.n
v ¥ v
5 modj (m)

RO*M-Z
M

Figure 7. The N-ary multiplying tube modulo m

5. Conclusion

Thus outcomes obtained in this paper allowed to expand a circle of
algorithmic and technical solutions for implementation of N-ary
operations modulo m. The traditional devices use a so-caled a

"horizontal" method. The new algorithmic and technical solutions realize
a "vertical" method. The advantage of a "vertical" method in comparison
with a "horizontal" method at essential increase of an amount of
operands —N is reached. The characteristics of binary arithmetic devices
considerably depend on principles of construction of paralle counters of
units modulo. The level of complexity of paralld counters is the linear
function from number of entry arguments. Significant successes in the
theory of synthesis of paralle counters recently are reached. The depth of
the scheme was considerably reduced and the speed is raised.
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The reached outcomes can become dements of the theory of N-ary finite
ring computations.
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